Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab†
Abstract
Lead-based metal halide perovskite (MHP) nanocrystals (NCs) have emerged as a promising class of semiconducting nanomaterials for a wide range of optoelectronic and photoelectronic applications. However, the intrinsic lead toxicity of MHP NCs has significantly hampered their large-scale device applications. Copper-base MHP NCs with composition-tunable optical properties have emerged as a prominent lead-free MHP NC candidate. However, comprehensive synthesis space exploration, development, and synthesis science studies of copper-based MHP NCs have been limited by the manual nature of flask-based synthesis and characterization methods. In this study, we present an autonomous approach for the development of lead-free MHP NCs via seamless integration of a modular microfluidic platform with machine learning-assisted NC synthesis modeling and experiment selection to establish a self-driving fluidic lab for accelerated NC synthesis science studies. For the first time, a successful and reproducible in-flow synthesis of Cs3Cu2I5 NCs is presented. Autonomous experimentation is then employed for rapid in-flow synthesis science studies of Cs3Cu2I5 NCs. The autonomously generated experimental NC synthesis dataset is then utilized for fast-tracked synthetic route optimization of high-performing Cs3Cu2I5 NCs.
- This article is part of the themed collection: Nanoscale 2024 Emerging Investigators