Issue 44, 2024

Structure and property study for heterobimetallic Au⋯Ag and Au⋯Cu thiolate interlocked [2]catenane and comparison with homometallic Au⋯Au gold(i) thiolate interlocked [2]catenanes – a theoretical study

Abstract

A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au⋯Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au⋯Ag interlocking [2]catenanes, the Au⋯Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole–electron analysis results indicate that the S0 → S1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au⋯Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure.

Graphical abstract: Structure and property study for heterobimetallic Au⋯Ag and Au⋯Cu thiolate interlocked [2]catenane and comparison with homometallic Au⋯Au gold(i) thiolate interlocked [2]catenanes – a theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2024
Accepted
03 Oct 2024
First published
24 Oct 2024

New J. Chem., 2024,48, 18757-18767

Structure and property study for heterobimetallic Au⋯Ag and Au⋯Cu thiolate interlocked [2]catenane and comparison with homometallic Au⋯Au gold(I) thiolate interlocked [2]catenanes – a theoretical study

Y. Liu, S. Wu, Q. Pan, F. Gao, Y. Duan, Y. Kan and Z. Su, New J. Chem., 2024, 48, 18757 DOI: 10.1039/D4NJ03520H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements