Issue 24, 2024

Multivacant polyoxometalate-stabilizing palladium nanoparticles catalyze the N-formylation of amines with CO2 and H2

Abstract

In this work, the Keggin-type tri- and mono-palladium-substituted silicotungstates (POMs) were constructed by the reaction of tri- and monovacant silicotungstates ([SiW9O34]10− or [SiW11O39]8−) with palladium chloride. The as-obtained potassium salts of POMs demonstrated that Pd2+ ions were incorporated into POM frameworks. Notably, Pd nanoparticles were formed when the tri-palladium-substituted Keggin-type POM salts were reduced by H2. It was found that [SiW9O34]10− anions could act as multivacant coordination ligands to effectively stabilize palladium nanoparticles. The Pd nanoparticles were catalytically active for the reductive amination of carbon dioxide, and the formylamides were achieved in high yields under mild reaction conditions with methanol as the solvent. Notably, the Pd nanocatalyst exhibited outstanding recyclability and was recycled at least eight times without any obvious loss of the catalytic activity. The characterization by HAADF-STEM revealed that Pd nanoparticles formed a stable structure with POMs. Further studies demonstrated that the N-formylation reaction proceeds by the “methyl formate” pathway, involving CO2 activation by an in situ reaction with methanol and K2CO3 to generate potassium methyl carbonate. H2 underwent heterolytic dissociation with the assistance of a base over a Pd0–SiW9 catalyst, leading to one proton bound to carbonates and the hydride on a Pd atom (Pd–H). Moreover, the coupling of potassium methyl carbonate and Pd–H species afforded methyl formate intermediates in methanol, and then the reaction of methyl formate with amines gave formamides. This catalytic system demonstrated the benefits of excellent reactivity, stability, and recyclability for the N-formylation reaction.

Graphical abstract: Multivacant polyoxometalate-stabilizing palladium nanoparticles catalyze the N-formylation of amines with CO2 and H2

Supplementary files

Article information

Article type
Paper
Submitted
05 Mar 2024
Accepted
21 May 2024
First published
22 May 2024

New J. Chem., 2024,48, 11014-11024

Multivacant polyoxometalate-stabilizing palladium nanoparticles catalyze the N-formylation of amines with CO2 and H2

W. Lai, Y. Jiang, H. Liao, X. Wei, Z. Xu, J. Ding, N. An, S. Dai and Z. Hou, New J. Chem., 2024, 48, 11014 DOI: 10.1039/D4NJ01033G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements