Issue 1, 2024

Interaction of phytate with cyclic polyamines

Abstract

myo-Inositol hexakisphosphate (InsP6) is a widespread molecule, present in relatively high concentrations in nature, and plays key roles in many metabolic processes. Its complex chemistry arises from the presence of flexible ring bearing six multivalent phosphates that can either be anionic or interact with a myriad of cationic species in solution, including protonated polyamines. Understanding the interaction of this biomolecule with inorganic and organic cations aims to gain a better picture of its chemical and structural behavior in biological systems. Building on our previous work on the interaction of InsP6 with inorganic cations and linear polyamines, here, in this study, we present the corresponding interaction with cyclic polyamines via potentiometry, with the help of computational tools, in order to understand the main determinants of the stability of the formed species and the structural insights that rationalize the interaction. Stable InsP6 : polyamine 1 : 1 species are detected and the strength of the interaction results from an interplay of electrostatic attractions and hydrogen bonding formation. Even though the results show a certain resemblance to the interaction of InsP6 with linear polyamines, the higher rigidity imposed by cyclization increases the selectivity of InsP6 towards polyamines, giving rise to the molecular recognition of hexamine 18N6, due to the spatial geometric fit of the charge distribution of the interacting anionic InsP6 and the protonated polyamine.

Graphical abstract: Interaction of phytate with cyclic polyamines

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2023
Accepted
21 Nov 2023
First published
24 Nov 2023

New J. Chem., 2024,48, 309-321

Interaction of phytate with cyclic polyamines

J. Torres, N. Veiga, M. Savastano, C. Kremer and A. Bianchi, New J. Chem., 2024, 48, 309 DOI: 10.1039/D3NJ04652D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements