Issue 11, 2024

3D printing of polyvinyl alcohol hydrogels enabled by aqueous two-phase system

Abstract

The synthesis of PVA hydrogels (PVA-Hy) requires a highly basic environment (e.g., an aqueous solution of sodium hydroxide, NaOH, 14% w/w, 4.2 M), but the rapid crosslinking of PVA due to high pH makes it challenging to perform layer-by-layer three-dimensional (3D) printing of PVA-Hy. This work demonstrated 3D printing of PVA-Hy in moderate alkaline conditions (e.g., NaOH, 1% w/w, 0.3 M) assisted by aqueous two-phase system (ATPS). Salting out of PVA to form ATPS allowed temporal shape retention of a 3D-printed PVA structure while it was physically crosslinked in moderate alkaline conditions. Crucially, the layer-to-layer adhesion of PVA was facilitated by delayed crosslinking of PVA that required additional reaction time and overlapping between the layers. To verify this principle, we studied the feasibility of direct ink write (DIW) 3D printing of PVA inks (5–25% w/w, μ = 0.1–20 Pa s, and MW = 22 000 and 74 800) in aqueous embedding media offering three distinct chemical environments: (1) salts for salting out (e.g., Na2SO4), (2) alkali hydroxides for physical crosslinking (e.g., NaOH), and (3) a mixture of salt and alkali hydroxide. Our study suggested the feasibility of 3D-printed PVA-Hy using the mixture of salt and alkali hydroxide, demonstrating a unique concept of embedded 3D printing enabled by ATPS for temporary stabilization of the printed structures to facilitate 3D fabrication.

Graphical abstract: 3D printing of polyvinyl alcohol hydrogels enabled by aqueous two-phase system

Supplementary files

Article information

Article type
Communication
Submitted
17 Oct 2023
Accepted
13 Feb 2024
First published
14 Feb 2024

Mater. Horiz., 2024,11, 2701-2717

3D printing of polyvinyl alcohol hydrogels enabled by aqueous two-phase system

R. Karyappa, N. Nagaraju, K. Yamagishi, X. Q. Koh, Q. Zhu and M. Hashimoto, Mater. Horiz., 2024, 11, 2701 DOI: 10.1039/D3MH01714A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements