Issue 6, 2024

Selective expansion of renal cancer stem cells using microfluidic single-cell culture arrays for anticancer drug testing

Abstract

The suboptimal prognosis associated with drug therapy for renal cancer can be attributed to the presence of stem-cell-like renal cancer cells. However, the limited number of these cells prevents conventional drug screening assays from effectively assessing the response of renal cancer stem cells to anti-cancer agents. To address this issue, the present study employed microfluidic single-cell culture arrays to expand renal cancer stem cells by exploiting the anti-apoptosis and self-renewal properties of tumor stem cells. A microfluidic chip with 18 000 hydrophilic microwells was designed and fabricated to establish the single-cell culture array. Over a 7 day culture, the large-scale single-cell culture yielded a limited quantity of single-cell-derived tumorspheres. The sphere formation rates for Caki-1, 786-O, and ACHN cells were determined to be 8.74 ± 0.53%, 12.02 ± 1.43%, and 4.98 ± 1.68%, respectively. The expanded cells exhibited stemness characteristics, as indicated by immunofluorescence, flow cytometry, serial passaging, and in vitro differentiation assays. Additionally, the comparative transcriptomic analysis showed significant differences in the gene expression patterns of the expanded cells compared to the differentiated renal cancer cells. The drug testing indicated that renal cancer stem cells exhibited reduced sensitivity towards the tyrosine kinase inhibitors sorafenib and sunitinib, compared to differentiated renal cancer cells. This reduced sensitivity can be attributed to the elevated expression levels of tyrosine kinase in renal cancer stem cells. This present study provides evidence that the utilization of microfluidic single-cell culture arrays for selective cell expansion can facilitate drug testing of renal cancer stem cells.

Graphical abstract: Selective expansion of renal cancer stem cells using microfluidic single-cell culture arrays for anticancer drug testing

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2023
Accepted
26 Jan 2024
First published
01 Feb 2024

Lab Chip, 2024,24, 1702-1714

Selective expansion of renal cancer stem cells using microfluidic single-cell culture arrays for anticancer drug testing

X. Wang, T. He, Z. Chen, J. Chen, Y. Luo, D. Lin, X. Li and D. Liu, Lab Chip, 2024, 24, 1702 DOI: 10.1039/D3LC00922J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements