Valorization of waste biomass for the fabrication of isocyanate-free polyurethane foams

Abstract

Polyurethane (PU) foams are key players within the large foam market, with applications such as thermal insulating materials, cushioning, protective equipment, etc. With the current regulatory constraints on the use of toxic isocyanates and the ambitious goals to increase the renewable content of plastics while valorizing waste, isocyanate-free liquid formulations containing biofillers that are able to easily self-foam are needed for more sustainable PU foams in the future. Herein, we incorporate various abundant waste stream-sourced biofillers (proteins, lignin derivatives, and polysaccharides) into isocyanate-free PU formulations composed of CO2-based poly(cyclic carbonate)s, diamines and a catalyst. The formulations containing up to 30 wt% of biofillers are foamed at 100 °C without adding any external foaming agent. Moisture naturally present in the biofillers partially hydrolyses the cyclic carbonates, which generates the blowing agent (CO2). The biofiller, even at a low content (1 wt%), stabilizes the growing cells, providing homogeneous foams. Although the nature of the biofiller does not significantly affect the foams’ density and morphology, their mechanical properties are strongly affected, for example from a rigid foam with 10 wt% keratin (compression modulus (E) = 21.9 MPa) to a flexible one with chitosan (E = 0.2 MPa). Preliminary studies indicate that the biofiller does not prevent the foam recycling into polymer films by hot pressing. Virtually any kind of moisture-containing biowaste can be used as a water reservoir to foam the formulations while increasing the bio-based content of the material, which reaches 97% when selecting bio-based monomers. This process valorizes abundant waste stream-sourced biofillers for producing more sustainable PU foams.

Graphical abstract: Valorization of waste biomass for the fabrication of isocyanate-free polyurethane foams

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2024
Accepted
13 Jun 2024
First published
13 Jun 2024

Green Chem., 2024, Advance Article

Valorization of waste biomass for the fabrication of isocyanate-free polyurethane foams

D. Trojanowska, F. Monie, G. Perotto, A. Athanassiou, B. Grignard, E. Grau, T. Vidil, H. Cramail and C. Detrembleur, Green Chem., 2024, Advance Article , DOI: 10.1039/D4GC01547A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements