Issue 18, 2024

Preparation of a Lactobacillus rhamnosus ATCC 7469 microencapsulated-lactulose synbiotic and its effect on equol production

Abstract

Equol is a highly active product of soy isoflavones produced by specific bacteria in the human or animal colon. However, equol production is influenced by differences in the gut flora carried by the body. Our previous research has shown that a synbiotic preparation comprising the probiotic Lactobacillus rhamnosus ATCC 7469 and the prebiotic lactulose can enhance equol production by modulating the intestinal flora. Nevertheless, the harsh environment of the gastrointestinal tract limits this capability by diminishing the number of probiotics reaching the colon. Microencapsulation of probiotics is an effective strategy to enhance their viability. In this study, probiotic gel microspheres (SA-S-CS) were prepared using an extrusion method, with sodium alginate (SA) and chitosan (CS) serving as the encapsulating materials. Scanning electron microscopy (SEM) was employed to observe the surface morphology and the internal distribution of bacteria within the microcapsules. The structural characteristics of the microcapsules were investigated using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Furthermore, the thermal stability, storage stability, probiotic viability post-simulated gastrointestinal fluid treatment, and colon release rate were examined. Finally, the impact of probiotic microencapsulation on promoting equol production by the synbiotic preparation was assessed. The results indicated that the microcapsules exhibited a spherical structure with bacteria evenly distributed on the inner surface. Studies on thermal and storage stability showed that the number of viable cells in the probiotic microcapsule group significantly increased compared to the free probiotic group. Gastrointestinal tolerance studies revealed that after in vitro simulated gastrointestinal digestion, the amount of viable cells in the microcapsules was 7 log10 CFU g−1, demonstrating good gastrointestinal tolerance. Moreover, after incubation in simulated colonic fluid for 150 min, the release rate of probiotics reached 93.13%. This suggests that chitosan-coated sodium alginate microcapsules can shield Lactobacillus rhamnosus ATCC 7469 from the gastrointestinal environment, offering a novel model for synbiotic preparation to enhance equol production.

Graphical abstract: Preparation of a Lactobacillus rhamnosus ATCC 7469 microencapsulated-lactulose synbiotic and its effect on equol production

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2024
Accepted
06 Aug 2024
First published
13 Aug 2024

Food Funct., 2024,15, 9471-9487

Preparation of a Lactobacillus rhamnosus ATCC 7469 microencapsulated-lactulose synbiotic and its effect on equol production

X. Wang, Y. Ma, Y. Liu, J. Zhang, W. Jiang, X. Fang and L. Wang, Food Funct., 2024, 15, 9471 DOI: 10.1039/D4FO02690J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements