Issue 17, 2024

Lactobacillus-derived indole derivatives ameliorate intestinal barrier damage in rat pups with complementary food administration

Abstract

The consumption of complementary foods can bring about diarrhea and intestinal barrier dysfunction in infants. In this study, three different Lactobacillus strains combined with L-tryptophan (Trp) were administered to rat pups with complementary foods. Complementary food feeding caused inflammatory cell infiltration, crypt structure irregularity and goblet cell reduction in the colon tissues of the rat pups. However, the oral administration of Trp combined with Lactiplantibacillus plantarum DPUL-S164 or Limosilactobacillus reuteri DPUL-M94 significantly restored the pathological changes in the colon tissues and inhibited the expression of pro-inflammatory cytokines in the colon and ileum of the rat pups. M94 or S164 combined with Trp intervention could promote the expression of cell differentiation genes and tight junction proteins, and restore the intestinal barrier damage caused by complementary foods in rat pups by activating the aryl hydrocarbon receptors (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In addition, the indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), or indole-3-carbaldehyde (I3C) level in the cecal contents of the rat pups increased after intervention of Trp combined with S164 or M94, which may account for the amelioration of intestinal barrier damage in rat pups administered with complementary foods. Furthermore, S164 or M94 combined with Trp intervention up-regulated the relative abundance of f_Lactobacillaceae, f_Akkermansiaceae, g_Lactobacillus, and g_Akkermansia in the intestinal tract of the rat pups. In conclusion, S164 or M94 combined with Trp intervention can ameliorate complementary food-induced intestinal barrier damage and gut flora disorder in rat pups by producing ILA, IPA, or I3C, which are AhR ligands.

Graphical abstract: Lactobacillus-derived indole derivatives ameliorate intestinal barrier damage in rat pups with complementary food administration

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2024
Accepted
08 Jul 2024
First published
06 Aug 2024

Food Funct., 2024,15, 8775-8787

Lactobacillus-derived indole derivatives ameliorate intestinal barrier damage in rat pups with complementary food administration

A. Wang, C. Guan, T. Wang, G. Mu and Y. Tuo, Food Funct., 2024, 15, 8775 DOI: 10.1039/D4FO02230K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements