Issue 3, 2024

Unlocking the potential of rice bran through extrusion: a systematic review

Abstract

Rice bran (RB) is a by-product of the rice milling process and is rich in nutrients and bioactive compounds making it a valuable ingredient for extruded foods. Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) was applied that involved screening large databases (Google Scholar, PubMed, Web of Science, ScienceDirect and Scopus) and analysing the most relevant peer-reviewed forty-four journal articles. This review discusses the benefits of incorporating RB into various food product formulations, including meat analogues, biscuits, cookies, cakes, noodles, breads, and pasta. The review also examines how extrusion conditions, such as temperature, screw speed, and moisture content affect the physicochemical parameters of the expanded extrudates from the feed formulation incorporated with RB. In extrusion, 0–30% RB was used as feed in 52.27% of the studies, and 71.42% of the studies used screw speed below 250 rpm. Almost all studies had extrusion temperatures below 150 °C, and plant-based meat used a higher moisture content (60–70%) during extrusion. The extrusion of RB results in increased hardness and bulk density, and reduced expansion. However, depending on the feed's composition, moisture content, extrusion temperature, and screw speed, its addition to the feed mixture could cause variability of results for the water solubility index (WSI), water absorption index (WAI), thermal behaviour and viscosity. RB in foods processed through extrusion enhances their nutritional profiles, especially total phenolics, antioxidant activity, and functional properties and supports sustainable practices. Overall, the use of RB in food extrusion holds promise for the development of nutritious, functional, and sustainable food products.

Graphical abstract: Unlocking the potential of rice bran through extrusion: a systematic review

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
26 Jan 2024
Accepted
01 Mar 2024
First published
04 Mar 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2024,2, 594-614

Unlocking the potential of rice bran through extrusion: a systematic review

Y. KC, J. Mitchell, B. Bhandari and S. Prakash, Sustainable Food Technol., 2024, 2, 594 DOI: 10.1039/D4FB00027G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements