Issue 3, 2024

Tiger nut (Cyperus esculentus) starch: extraction, composition, structure, properties, modification and uses

Abstract

Although tiger nut, the tuber of Cyperus esculentus L., is regarded as a new source of edible oil, it also constitutes up to 14–37% of starch on a dry basis. Since it is globally popular and widely cultivated in Africa, Asia, Europe and America, tiger nut is a promising and underutilized source of commercially available starch. To date, there is a lack of systematic understanding of tiger nut starch. Herein, we mainly focus on tiger nut starch, including its extraction, chemical composition, structure, properties, modification and application aspects. The chemical composition of tiger nut starch is proven to be markedly affected by its extraction method. The amylose content of tiger nut starch is reported to vary from 9.71% to 27.01%. Tiger nut starch is mostly spherical and oval, and its granule size ranges from 2 to 18.53 μm with an A-type crystallinity. Compared with common starch (such as wheat, corn, potato, and cassava starch), tiger nut starch shows unique differences in fine molecular structures, swelling power, solubility, thermal properties, pasting properties and in vitro digestibility. In order to improve its properties and potentially widen its uses, tiger nut starch has been modified by physical, chemical, enzymatic and dual methods. Besides, tiger nut starch has great potential for food and non-food uses. This review is worthy for the further development of tiger nut as a sustainable crop as well as for the value-added utilization of tiger nut starch.

Graphical abstract: Tiger nut (Cyperus esculentus) starch: extraction, composition, structure, properties, modification and uses

Article information

Article type
Review Article
Submitted
20 Dec 2023
Accepted
13 Mar 2024
First published
26 Mar 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2024,2, 635-651

Tiger nut (Cyperus esculentus) starch: extraction, composition, structure, properties, modification and uses

Y. Wu, Q. Mao, G. Zhao and F. Ye, Sustainable Food Technol., 2024, 2, 635 DOI: 10.1039/D3FB00246B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements