Issue 1, 2024

Use of machine learning for monitoring the growth stages of an agricultural crop

Abstract

As one of the world's major crops, oats (Avena sativa L.) require management strategies to increase their yield and quality. This study utilised an unmanned aerial vehicle (UAV) with multispectral image sensors to predict winter oats height (1.18 m at ripening stage) and yield (maximum >7.62 t per ha) using the normalised difference vegetation index (NDVI) and chlorophyll green vegetation index (CI green VI) across three different growth stages (flowering, grain filling and ripening). To corroborate the vegetation indices ground truth data on the measured crop yield, a variety of chemical soil health indicators (i.e. nitrogen, phosphorus, potassium, pH, and soil organic matter), and a crop quality indicator (β-glucan) were determined. A hierarchical multinomial logistic regression machine learning model was developed to predict the oats yield incorporating the chemical soil health indicators and crop quality indicator. The determined ‘combination model’ using the CI green VI, with 16 soil feature parameters, showed good specificity (0.87), sensitivity (0.95), and accuracy (0.93) at estimating the very high oat yield. Finally, the study provides the range of soil nutrient levels and the crop quality indicator that farmers must maintain to gain the highest oat yield at harvest. The findings of this research study will be particularly valuable as a Precision Agriculture management strategy for maximising winter oat yield and quality.

Graphical abstract: Use of machine learning for monitoring the growth stages of an agricultural crop

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Jun 2023
Accepted
25 Oct 2023
First published
26 Oct 2023
This article is Open Access
Creative Commons BY license

Sustainable Food Technol., 2024,2, 104-125

Use of machine learning for monitoring the growth stages of an agricultural crop

S. Ahmed, N. Basu, C. E. Nicholson, S. R. Rutter, J. R. Marshall, J. J. Perry and J. R. Dean, Sustainable Food Technol., 2024, 2, 104 DOI: 10.1039/D3FB00101F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements