Erosion of rigid plastics in turbid (sandy) water: quantitative assessment for marine environments and formation of microplastics†
Abstract
Mechanical degradation (erosion) of plastics in the marine environment has been reported in many literature studies but without quantitative information. This type of degradation is crucial as it accounts for most of the initial microplastic products, in marine environments (e.g., rivers and oceans). Here, we quantify the erosion of plastics by water-borne sediments under typical perpendicular water velocities and sand loads of turbid rivers and coastal oceans. Polypropylene (PP) shows the highest response to water-borne erosion, with a surface degradation rate of 5160 μm per year (4.44 mg per mm2 per year), compared with high-density polyethylene (HDPE) with a degradation rate of 1874 μm per year (1.79 mg per mm2 per year), resulting in the formation of microplastics (MPs). The rate of formation of such microplastic particles (>10 μm), as characterised by a laser direct infrared (LDIR) chemical imaging system, amounts to 669 particles per mm2 per year for PP and 187 particles per mm2 per year for HDPE, exhibiting average particle sizes of 60 μm and 23 μm in the same order. Furthermore, surface microscopy provided valuable insights into the dominant erosion mechanisms, revealing three distinct zones and the surface features reveal the brittle erosion behaviours. These results will enable a better assessment of degradation and lifetime prediction of plastics in turbid rivers and coastal oceans, allowing precise estimation of the rate of formation of MPs.