Cosolvent Occupied Solvation Tuned Anti-Oxidation Therapy Toward Highly Safe 4.7V-Class NCM811 Battery

Abstract

Fluorinated electrolytes are promising for stabilizing the interfacial chemistry in high-voltage LiNi0.8Co0.1Mn0.1O2 (NCM811) batteries. However, previous fluorinated electrolytes overlooked the essential role of the cathode-electrolyte interface (CEI) on de-solvation, relying heavily on weak solvation. Theoretically, the cosolvent occupied solvation structure characteristic of highly antioxidative cosolvent and the easily oxidized salt additive in the first solvation shell, is highly desirable to both widen electrochemical window and promote anion-enriched CEI to facilitate the de-solvation. The key challenges lie in identifying ideal cosolvents that are highly polar, antioxidative, and with stronger interaction with anions, to replace the solvation site of the main solvents without oxidation of itself and promote the oxidation of additive anions. Herein sulfone (SL) and DFOB- are screened out following developed rules, the interaction relationships are: i) Li+ - cosolvent > Li+- main solvent; ii) DFOB- - cosolvent > DFOB- - main solvent; iii) DFOB- - cosolvent > DFOB- - Li+. And optimized fluorinated electrolyte composed of 10% SL and 0.02 M LiDFOB is therefore successfully developed. This occupied solvation design promotes both interfacial/ anodic stability and de-solvation under an aggressive 4.7 V. Consequently, ~400 Wh kg-1 NCM811/Li cells at 4.7 V demonstrate an 82% capacity retention after 200 cycles. Commercial NCM811/Gr pouch cells at 4.5 V achieve 92% capacity retention over 500 cycles, concurrently with unexpectedly high safety performance in terms of thermal, mechanical, and electrical abuse. This work underscores the critical impact of solvation site-occupied cosolvent on the CEI modification and kinetics optimization, opening a new avenue for high voltage electrolyte design.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 May 2024
Accepted
12 Jul 2024
First published
18 Jul 2024

Energy Environ. Sci., 2024, Accepted Manuscript

Cosolvent Occupied Solvation Tuned Anti-Oxidation Therapy Toward Highly Safe 4.7V-Class NCM811 Battery

Y. Chen, Y. Zhao, A. Wang, D. Zhang, B. Li, X. He, X. Fan and J. Liu, Energy Environ. Sci., 2024, Accepted Manuscript , DOI: 10.1039/D4EE02074J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements