Issue 46, 2024

Crystalline bilayer formation in homoleptic low-spin Fe(ii) compounds with alkyl chain substituents

Abstract

A series of asymmetric, homoleptic Fe(II) compounds based on the facially-binding tridentate ligand N-methyl-1,1-di(pyridin-2-yl)Cn-amine (LCn) (Cn = butyl, hexyl, octyl, decyl, dodecyl, tetradecyl and hexadecyl alkyl chains) with formula [FeII(LCn)2](X)2·solvate, where n = 4, 14 and X = BF4 (1C4 and 1C14) or n = 6, 8, 10, 12, 16 and X = CF3SO3 (1C6–1C12 and 1C16), are reported. Complexes 1C6 to 1C16 pack in crystalline bilayers in the solid state, forming hydrophobic and hydrophilic regions between adjacent layers of complexes. The combination of short Fe–N bond distances (∼2.00 Å) and SQUID magnetic susceptibility measurements show that the complexes are in the low-spin state across all measured temperature ranges. Differential scanning calorimetry confirmed phase transitions occur in compounds 1C6, 1C12, 1C14 and 1C16 upon heating from room temperature. The lack of any spin transitions and thermal stability conferred by thermogravimetric analysis over this temperature range suggest that these transitions are crystallographic in nature. 1H NMR studies show that the low-spin Fe(II) centres undergo partial conversion to paramagnetic species in solution. UV-vis spectroscopy in a range of common organic solvents show that the central Fe ions remain in the +2 oxidation state, suggesting that the increase in magnetic susceptibility in solution is likely due to partial spin-crossover, or due to speciation, in which a proportion of the compounds are high-spin Fe(II) complexes.

Graphical abstract: Crystalline bilayer formation in homoleptic low-spin Fe(ii) compounds with alkyl chain substituents

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2024
Accepted
25 Oct 2024
First published
04 Nov 2024

Dalton Trans., 2024,53, 18698-18710

Crystalline bilayer formation in homoleptic low-spin Fe(II) compounds with alkyl chain substituents

B. L. Geoghegan, S. Koutsoukos, W. Phonsri, K. S. Murray, P. J. Cragg, M. K. Dymond and I. A. Gass, Dalton Trans., 2024, 53, 18698 DOI: 10.1039/D4DT02667E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements