Observation of Haldane magnetism in organically templated vanadium phosphate (enH2)0.5VPO4OH†
Abstract
We prepared an organically templated magnet, (enH2)0.5VPO4OH (enH2 = diprotonated ethylenediamine), hydrothermally and characterized its crystal structure by powder X-ray diffraction and Fourier-transform infrared spectroscopy, and its physical properties by magnetization, specific heat and nuclear magnetic resonance measurements and density functional theory calculations. (enH2)0.5VPO4OH consists of uniform chains of V3+ (d2, S = 1) ions and exhibits Haldane magnetism with spin gap Δ = 59.3 K from the magnetic susceptibility χ(T) at μ0H = 0.1 T, which is reduced to 48.4 K at μ0H = 9 T according to the 31P shift. The NMR data evidence the formation of a spin-glass state of unpaired S = 1/2 spins at TS–G ≈ 3 K and indicate that the Haldane S = 1 spin chain segments are much longer in the organically templated magnet (enH2)0.5VPO4OH than in the ammonium counterpart NH4VPO4OH. The single-ion anisotropy D and the interchain exchange J′ in (enH2)0.5VPO4OH and NH4VPO4OH were estimated in density functional calculations to find them very weak compared to the intrachain exchange J.
- This article is part of the themed collection: Dalton Transactions HOT Articles