Issue 32, 2024

Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(ii) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes

Abstract

Multinuclear (di/tri) copper(II) complexes bridged through hydroxyl groups are very interesting coordination complexes owing to their potential applications in various fields. In this work, three novel dinuclear (μ-hydroxo)-bridged copper(II) complexes in the crystal form, namely, [Cu2(3,5-DIFLB)2(H2tea)2](H2O) (1), [Cu2(4-ClB)2(H2tea)2](H2O) (2), and [Cu2(4-ETHB)2(H2tea)2](H2O)2 (3) (where DIFLB = difluorobenzoate, CLB = chlorobenzoate, ETHB = ethoxybenzoate, and H3tea = triethanolamine), were isolated at room temperature using methanol and water in a 4 : 1 v/v ratio as a solvent. Furthermore, all three complexes (1–3) were characterised using spectroscopic (UV-vis, DRS, and FT-IR), electrochemical (CV) and single-crystal X-ray diffraction techniques. Structural insights gained by packing analysis revealed the role of steric constraints of substituents and various non-covalent interactions in lattice stabilization, which were indeed supported by theoretical and molecular electrostatic potential illustrations. Hirshfeld surface analysis provided quantitative verification about various non-covalent interactions (interatomic contacts) involved in the packing of molecules. Interestingly, as a potential application, complexes 1–3 all exhibited remarkable visible light-mediated photo-Fenton degradation of approximately 98% for 50 ppm concentration of organic dyes (fuchsin basic (FB) and methyl orange (MO)) in 90 minutes with the optimized conditions of 1 mg mL−1 of dye solution. In all the cases, dye degradation by these materials was ascribed to the symbiotic relations among the molecular structures of complexes 1–3, which were endowed with various electron-withdrawing and electron-releasing substituents and ionic strength, with respect to the structure, shape and interacting patterns of dye molecules. The adsorption mechanism indicates that various weak interactions between the donor and acceptor groups of complexes and dyes, such as electrostatic, hydrogen bonding, and direct coordination to metal sites, play a crucial role, which is confirmed by molecular dynamics (MD) simulations. Theoretical studies by DFT-based descriptors, molecular electrostatic potentials, and band gaps provided deep insights into various electronic and reactivity parameters. For subsequent processes of dye degradation, complexes 1–3 were stable and recoverable. The successful integration of experimental and theoretical approaches sheds light on copper-based dinuclear stable coordination complexes, showcasing a significant step towards the development of novel heterogeneous photo-Fenton catalysts.

Graphical abstract: Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(ii) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2024
Accepted
18 Jul 2024
First published
01 Aug 2024

Dalton Trans., 2024,53, 13638-13661

Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(II) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes

C. Chauhan, Tanuj, R. Kumar, J. Kumar, S. Sharma, S. Benmansour and S. Kumar, Dalton Trans., 2024, 53, 13638 DOI: 10.1039/D4DT01463D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements