Orthogonal magnetic orbit-als in high spin Cu-VO units: structure, mag-netism and EPR study of aniso-tropic hetero-metallic com-plexes

Abstract

Molecular-based magnetic materials are expected to serve as building blocks for quantum bits. To realize high-dimensional Hilbert space and addressability, we constructed anisotropic multi-level systems based on CuII and VIV with orthogonal magnetic orbitals. The crystal structures and intramolecular magnetic cou-plings of four CuIIVOII com-plexes [{CuVO(appen)2}2], [{CuVO(fhma)2EDA}2], [{Cu-VO(hfca)2EDA}2] and [Cu-VO(hfca)2DPEDA]n are charac-terized. Due to the orthogonal magnetic orbitals of CuII and VIV, the Cu-V pairs in the four complexes have strong ferro-magnetic couplings, and the coupling strength is linearly related to the dihedral angle between the two equatorial planes of the two coordination polyhedra. Because of the triplet ground state, the sys-tem can be described by an effective Hamiltonian model consisting of two S = 1 spins coupled, the anisotropy pa-rameters of [{Cu-VO(hfca)2EDA}2] and [Cu-VO(hfca)2DPEDA]n were ob-tained by the simulation of X-band continuous wave elec-tron paramagnetic resonance (cw-EPR) spectra, confirming that both complexes have zero-field splitting addressable on the relative energy scale. The results indicate that con-structing multi-centre com-plexes based on orthogonal magnetic orbitals makes a promising strategy for design-ing multidimensional quantum bits.

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2024
Accepted
18 Jul 2024
First published
19 Jul 2024

Dalton Trans., 2024, Accepted Manuscript

Orthogonal magnetic orbit-als in high spin Cu-VO units: structure, mag-netism and EPR study of aniso-tropic hetero-metallic com-plexes

Q. Deng, Y. Zhang, Y. Wang, Y. Xie, P. Fu, S. Gao, Z. Liu and S. Jiang, Dalton Trans., 2024, Accepted Manuscript , DOI: 10.1039/D4DT01346H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements