Issue 18, 2024

68Ga labeled EphA2-targeted cyclic peptide: a novel positron imaging tracer for triple-negative breast cancer?

Abstract

The absence of better biomarkers currently limits early diagnosis and treatment of triple-negative breast cancer (TNBC). Our previously published study reported that the cyclic-peptide SD01 exhibited specific binding to EphA2 (Ephrin type-A receptor 2) on TNBC. To develop a novel PET imaging agent, we prepared gallium-68 (68Ga) labeled-DOTA-SD01 and evaluated its specificity and effectiveness through micro PET/CT imaging in a TNBC-bearing mouse model. SD01 and a control linear peptide YSA were conjugated to DOTA and subsequently labeled with 68Ga, obtaining 68Ga-DOTA-SD01 and 68Ga-DOTA-YSA. Both showed high radiochemical purity, stability, good hydrophilicity, and high binding affinity to 4T1 cells. Micro PET/CT imaging showed high radioactivity accumulation in tumors; SUVmean (mean standardized uptake value) of tumors in the group of 68Ga-DOTA-SD01 was 3.34 ± 0.25 and 2.65 ± 0.32 in the group of 68Ga-DOTA-YSA; T/NT ratios (target to non-target, SUVmean ratios of tumor to muscle) were 3.12 ± 0.06 and 2.77 ± 0.11 at 30 min, respectively (p < 0.05). The biodistribution study showed that tumor uptake % ID per g (percentage of injected dose per gram of tissue) in the group of 68Ga-DOTA-SD01 was 2.73 ± 0.34, and 1.77 ± 0.38 in the group of 68Ga-DOTA-YSA; T/NT ratios (radioactivity of tumor to muscle) were 3.55 ± 0.12 and 3.05 ± 0.10 for both groups at 30 min, respectively (p < 0.05). All these suggest that 68Ga-DOTA-SD01 may act as a better novel PET imaging agent for EphA2 positive tumors, such as TNBC.

Graphical abstract: 68Ga labeled EphA2-targeted cyclic peptide: a novel positron imaging tracer for triple-negative breast cancer?

Article information

Article type
Paper
Submitted
21 Mar 2024
Accepted
13 Apr 2024
First published
16 Apr 2024

Dalton Trans., 2024,53, 7946-7952

68Ga labeled EphA2-targeted cyclic peptide: a novel positron imaging tracer for triple-negative breast cancer?

B. Qu, X. Li, Y. Ma, Y. Wang, Y. Han, G. Hou and F. Gao, Dalton Trans., 2024, 53, 7946 DOI: 10.1039/D4DT00837E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements