Ag@MUT-16 nanocomposite as a Fenton-like and plasmonic photocatalyst for degradation of Quinoline Yellow under visible light†
Abstract
A new cobalt-based metal–organic framework with the chemical formula of [Co2(DClTPA)2(DABCO)]·(DMF)4 (MUT-16) containing 1,4-diazabicyclo[2.2.2]octane (DABCO) and 2,5-dichloroterephthalic acid (DClTPA) has been designed and prepared through a solvothermal method. MUT-16 (MUT = Materials from University of Tehran) crystallized in a tetragonal system with I41/acd space group, based on single-crystal X-ray analysis. The Ag@MUT-16 nanocomposite was prepared using Ag nanoparticles (NPs) loaded into/onto porous MUT-16via photoreduction route (PR). The MUT-16 and Ag@MUT-16 were characterized using various techniques, such as PXRD, FT-IR, FE-SEM, TEM, EDX, N2 adsorption–desorption isotherms, TGA, DRS, PL, EIS, and Mott–Schottky measurements. The Ag@MUT-16 nanocomposite showed photocatalytic activity of 87.75% in the degradation of Quinoline Yellow (QY) after 30 min under visible light irradiation. The distinctive characteristics of the Ag@MUT-16 nanocomposite, such as the Fenton-like effect of Co2+ ions, surface plasmon resonance (SPR) of Ag NPs, Schottky junction at interfaces between Ag NPs and MUT-16, and reduction of electron–hole recombination through electron trapping by Ag NPs as co-catalyst, all play significant roles in the photocatalytic degradation of Quinoline Yellow (QY).