Issue 26, 2024

Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy

Abstract

Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.

Graphical abstract: Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2024
Accepted
03 Jun 2024
First published
04 Jun 2024

Dalton Trans., 2024,53, 10982-10990

Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy

J. Wang, J. Chen, H. Yan, T. Wang, Y. Zhang and W. Sun, Dalton Trans., 2024, 53, 10982 DOI: 10.1039/D4DT00040D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements