Issue 20, 2024

Advanced electrolytes for high-performance aqueous zinc-ion batteries

Abstract

Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as “water-in-salt” electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries.

Graphical abstract: Advanced electrolytes for high-performance aqueous zinc-ion batteries

Article information

Article type
Review Article
Submitted
29 Jul 2024
First published
10 Sep 2024

Chem. Soc. Rev., 2024,53, 10335-10369

Advanced electrolytes for high-performance aqueous zinc-ion batteries

J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li, H. Xu, R. Ye, Z. Tie, L. Sun and Z. Jin, Chem. Soc. Rev., 2024, 53, 10335 DOI: 10.1039/D4CS00584H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements