Nano-rods in Ni-rich layered cathodes for practical batteries

Abstract

Lithium transition metal oxide layers, Li[Ni1−xyCox(Mn and/or Al)y]O2, are widely used and mass-produced for current rechargeable battery cathodes. Development of cathode materials has focused on increasing the Ni content by simply controlling the chemical composition, but as the Ni content has almost reached its limit, a new breakthrough is required. In this regard, microstructural modification is rapidly emerging as a prospective approach, namely in the production of nano-rod layered cathode materials. A comprehensive review of the physicochemical properties and electrochemical performances of cathodes bearing the nano-rod microstructure is provided herein. A detailed discussion is regarding the structural stability of the cathode, which should be maximized to suppress microcrack formation, the main cause of capacity fading in Ni-rich cathode materials. In addition, the morphological features required to achieve optimal performance are examined. Following a discussion of the initial nano-rod cathodes, which were based on compositional concentration gradients, the preparation of nano-rod cathodes without the inclusion of a concentration gradient is reviewed, highlighting the importance of the precursor. Subsequently, the challenges and advances associated with the nano-rod structure are discussed, including considerations for synthesizing nano-rod cathodes and surface shielding of the nano-rod structure. It goes on to cover nano-rod cathode materials for next-generation batteries (e.g., all-solid-state, lithium-metal, and sodium-ion batteries), inspiring the battery community and other materials scientists looking for clues to the solution of the challenges that they encounter.

Graphical abstract: Nano-rods in Ni-rich layered cathodes for practical batteries

Article information

Article type
Review Article
Submitted
06 Jun 2024
First published
09 Oct 2024
This article is Open Access
Creative Commons BY license

Chem. Soc. Rev., 2024, Advance Article

Nano-rods in Ni-rich layered cathodes for practical batteries

G. Park, N. Park, H. Ryu, H. H. Sun, J. Hwang and Y. Sun, Chem. Soc. Rev., 2024, Advance Article , DOI: 10.1039/D3CS01110K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements