Issue 6, 2024

Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning

Abstract

The increasing demand for high-security, high-performance, and low-cost energy storage systems (EESs) driven by the adoption of renewable energy is gradually surpassing the capabilities of commercial lithium-ion batteries (LIBs). Solid-state electrolytes (SSEs), including inorganics, polymers, and composites, have emerged as promising candidates for next-generation all-solid-state batteries (ASSBs). ASSBs offer higher theoretical energy densities, improved safety, and extended cyclic stability, making them increasingly popular in academia and industry. However, the commercialization of ASSBs still faces significant challenges, such as unsatisfactory interfacial resistance and rapid dendrite growth. To overcome these problems, a thorough understanding of the complex chemical–electrochemical–mechanical interactions of SSE materials is essential. Recently, computational methods have played a vital role in revealing the fundamental mechanisms associated with SSEs and accelerating their development, ranging from atomistic first-principles calculations, molecular dynamic simulations, multiphysics modeling, to machine learning approaches. These methods enable the prediction of intrinsic properties and interfacial stability, investigation of material degradation, and exploration of topological design, among other factors. In this comprehensive review, we provide an overview of different numerical methods used in SSE research. We discuss the current state of knowledge in numerical auxiliary approaches, with a particular focus on machine learning-enabled methods, for the understanding of multiphysics-couplings of SSEs at various spatial and time scales. Additionally, we highlight insights and prospects for SSE advancements. This review serves as a valuable resource for researchers and industry professionals working with energy storage systems and computational modeling and offers perspectives on the future directions of SSE development.

Graphical abstract: Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning

Article information

Article type
Review Article
Submitted
13 Oct 2023
First published
20 Feb 2024

Chem. Soc. Rev., 2024,53, 3134-3166

Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning

Z. Zheng, J. Zhou and Y. Zhu, Chem. Soc. Rev., 2024, 53, 3134 DOI: 10.1039/D3CS00572K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements