Issue 43, 2024

New metallic ice phase under high pressure

Abstract

Crystal materials can exhibit novel properties under high pressure, which are completely different from properties under ambient conditions. Water ice has an exceptionally rich phase diagram with at least 20 known crystalline ice phases from experiments, where the high-pressure ice X and ice XVIII behave as an ionic state and a superionic state, respectively. Thus, the ice structures stabilized under high pressure are very likely to possess other novel properties. Herein, we constructed a sequence of hypothetical high-pressure ices whose structures were generated according to the topological frameworks of common metal oxides. Based on density functional theory calculations, the pressure-induced phase transition sequence is in order that the known Ag2O-Pn[3 with combining macron]m structure (ice X) transformed into a previously undiscovered TiO2_brookite-Pbca structure at a pressure of 300 GPa, followed by a transition to a new NaO2-Pa3 structure at a pressure of 2120 GPa. Hitherto unreported NaO2-Pa3 ice with a cubic structure is in the ionic state, where the oxygen atoms in NaO2-Pa3 have a face-centered cubic (fcc) sublattice, and the coordination number of H atoms increases to 3. These two structures are dynamically stable according to phonon spectrum analysis and remain stable at temperature of 100 K based on ab initio molecular dynamics (AIMD) simulations. More importantly, the NaO2-Pa3 ice exhibits novel metallic properties with a closing band gap above a pressure of 2600 GPa, owing to the electron orbital coupling of oxygen atoms in close proximity induced by pressure.

Graphical abstract: New metallic ice phase under high pressure

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2024
Accepted
10 Oct 2024
First published
22 Oct 2024

Phys. Chem. Chem. Phys., 2024,26, 27783-27790

New metallic ice phase under high pressure

Y. Huang, L. Zhu, H. Li, H. Fang, R. Chen and S. Sheng, Phys. Chem. Chem. Phys., 2024, 26, 27783 DOI: 10.1039/D4CP02543A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements