Atmospheric oxidation pathways of CF3CH2CFCl2 (HCFC-234fb) with OH-radicals and Cl-atoms: insights into the mechanism, thermodynamics, and kinetics†
Abstract
The atmospheric oxidation of 1,1-dichloro-1,3,3,3-tetrafluoropropane, HCFC-234fb (DTP), leads to the formation of harmful radicals, contributing to stratospheric ozone depletion. Thus, a detailed study of the gas-phase oxidation of the first-generation chlorofluorocarbon alternative HCFC-234fb by a reaction with hydroxyl radicals and chlorine atoms is important to understand its harmful effects on the environment. In this work, we have performed quantum chemical calculations to investigate the thermodynamic and kinetic aspects of the titled reaction. The potential energy profile calculated at the CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ level of theory shows that the major reaction pathway involves the abstraction of the H-atom from the central carbon atom, C2, giving rise to the product radical CF3C˙HCCl2F. The calculated rate-coefficients for the reaction with ˙OH and Cl-atoms are 3.89 × 10−15 and 2.54 × 10−17 cm3 molecule−1 s−1, respectively, at 298 K and are in accordance with the experimental rate coefficients. The results suggest that the rate-coefficient for the reaction of DTP with ˙OH is two orders of magnitude higher than that with Cl-atoms, indicating greater significance of the former reaction in the atmosphere. With the rate-coefficient values, the lifetime and the radiative efficiency were calculated to be 8.2 years and 0.246 W m−2 ppb−1, respectively. A 100-year global warming potential (GWP) of 712 was also estimated using the lifetime corrected radiative efficiency value.