Issue 27, 2024

Investigation of the exact spin channels in laser-induced spin dynamics in two mononuclear Cu(ii) complexes

Abstract

In the quest to harness the potential of nanospintronic applications, we analyze and investigate the spin channels for the ultrafast spin dynamics in mononuclear Cu2+(tdp)Cl2 (Cutdp) and Cu2+(tdp)Cl2·MeCN (Cutdp·MeCN) using a high-level ab initio many-body theory. In that spirit, we select two slightly different polymerizations arising from one parent complex. We establish the difference in magnetic behavior between the two complexes which arises solely from the geometrical differences. We calculate the static magnetic properties, such as the magnetic anisotropy of the complexes, which is analyzed by means of the magnetic moment of the ground state. The asymmetry of the core Cu–Cl–Cu–Cl axial plane unit is also reflected in the ground state absorption spectra of the two complexes. Comparisons with the experimental data are in good agreement with the exception of one peak in the theoretical calculations for each of the complexes, confirming the reliability of theoretical methods employed. A major finding in this work is the distinction between classical and coherent superpositions of Λ processes. We employ the selective blocking and retention (SBR) technique to find the unique path or paths for spin dynamic scenarios like spin flip and spin transfer. Additionally, we also present two different scenarios in which intermediate states are involved in spin dynamic processes, (i) classical superposition of Λ processes (i.e., there are many unique paths for transition, even with just one intermediate state the transition completes successfully), and (ii) collective coherent superposition of Λ processes (i.e., there is only one path for the transition, which requires more than one intermediate state to be in a specific coherent superposition). As a consequence, we gain insight into the type of correlations (static or dynamic) involved in a particular spin dynamic scenario.

Graphical abstract: Investigation of the exact spin channels in laser-induced spin dynamics in two mononuclear Cu(ii) complexes

Article information

Article type
Paper
Submitted
12 Mar 2024
Accepted
14 Jun 2024
First published
17 Jun 2024

Phys. Chem. Chem. Phys., 2024,26, 18816-18827

Investigation of the exact spin channels in laser-induced spin dynamics in two mononuclear Cu(II) complexes

B. C. Mummaneni, S. Chen, W. Hübner and G. Lefkidis, Phys. Chem. Chem. Phys., 2024, 26, 18816 DOI: 10.1039/D4CP01086H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements