Issue 22, 2024

Application of molecular dynamics-based pharmacophore and machine learning approaches to identify novel Mcl1 inhibitors through drug repurposing and mechanics research

Abstract

Myeloid cell leukemia 1 (Mcl1), a critical protein that regulates apoptosis, has been considered as a promising target for antitumor drugs. The conventional pharmacophore screening approach has limitations in conformation sampling and data mining. Here, we offered an innovative solution to identify Mcl1 inhibitors with molecular dynamics-refined pharmacophore and machine learning methods. Considering the safety and druggability of FDA-approved drugs, virtual screening of the database was performed to discover Mcl1 inhibitors, and the hit was subsequently validated via TR-FRET, cytotoxicity, and flow cytometry assays. To reveal the binding characteristics shared by the hit and a typical Mcl1 selective inhibitor, we employed quantum mechanics and molecular mechanics (QM/MM) calculations, umbrella sampling, and metadynamics in this work. The combined studies suggested that fluvastatin had promising cell inhibitory potency and was suitable for further investigation. We believe that this research will shed light on the discovery of novel Mcl1 inhibitors that can be used as a supplemental treatment against leukemia and provide a possible method to improve the accuracy of drug repurposing with limited computational resources while balancing the costs of experimentation well.

Graphical abstract: Application of molecular dynamics-based pharmacophore and machine learning approaches to identify novel Mcl1 inhibitors through drug repurposing and mechanics research

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2024
Accepted
27 Apr 2024
First published
16 May 2024

Phys. Chem. Chem. Phys., 2024,26, 16107-16124

Application of molecular dynamics-based pharmacophore and machine learning approaches to identify novel Mcl1 inhibitors through drug repurposing and mechanics research

H. Wang, Z. Qi, W. Lian, L. Ma, S. Wang, H. Liu, Y. Jin, H. Yang, J. Wang and M. Cheng, Phys. Chem. Chem. Phys., 2024, 26, 16107 DOI: 10.1039/D4CP00576G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements