Issue 21, 2024

Spreading dynamics of a droplet upon impact with a liquid film containing solid particles

Abstract

This study examines how a deionized water droplet behaves when it centrally collides with a liquid film containing TiO2 nanoparticles at low impact velocities, aiming to understand how nanoparticles affect droplet spreading, in particular its maximum spreading diameter. Typically, we found that both the spreading velocity and dynamic contact angle of the droplet would be similarly affected by increasing TiO2 nanoparticle concentration. During retraction, the droplet's dimensionless spreading diameter oscillates, with more pronounced oscillations at higher nanoparticle concentrations. Moreover, both the droplet's maximum dimensionless rebound height and dynamic contact angle show similar trends with increasing TiO2 nanoparticle concentration. Interestingly, we proved that the influence of the solid–liquid interaction (Stokes force) on the fluid during the spreading process accounts for less than 2% of the surface energy when the droplet reaches its maximum spreading diameter, indicating a negligible effect on droplet spreading. We hypothesize that the droplet's initial energy is fully converted into surface energy and viscous dissipation at maximum spreading diameter, which involves viscous dissipation both between the fluid and the solid wall surface and the fluid and solid particle surface. Based on this, we developed a model for predicting the droplet's maximum spreading diameter that includes parameters associated with the solid particles. Compared to models in the literature that do not consider the effect of solid particles, our model aligns more closely with experimental data. The results indicate that adding solid particles leads to increased viscous dissipation, which in turn reduces the droplet's maximum spreading diameter.

Graphical abstract: Spreading dynamics of a droplet upon impact with a liquid film containing solid particles

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2024
Accepted
05 May 2024
First published
20 May 2024

Phys. Chem. Chem. Phys., 2024,26, 15717-15732

Spreading dynamics of a droplet upon impact with a liquid film containing solid particles

J. Wang, L. Li, X. Lu, Y. Zhou, J. Zhou and D. Jing, Phys. Chem. Chem. Phys., 2024, 26, 15717 DOI: 10.1039/D4CP00072B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements