Issue 5, 2024

Control of polymer–protein interactions by tuning the composition and length of polymer chains

Abstract

Nanomoduling the 3D shape and chemical functionalities in a synthetic polymer may create recognition cavities for biomacromolecule binding, which serves as an attractive alternative to natural antibodies with much less cost. To obtain fundamental understanding and predict molecular design rules of the polymer antibody, we analyze the complex structure between the biomarker protein epithelial cell adhesion molecule (EpCAM) and a series of polymer ligands via molecular dynamics (MD) simulations. For monomeric ligands, strong enrichment of aromatic residues in protein binding sites is revealed, in line with the reported observations for natural antibodies. Yet, for linear polymers with a growing degree of polymerization, for the first time, a drastic change is revealed on the type of enriched protein residues and the location of protein binding sites, driven by the increasing steric hindrance effect that makes the adsorption of the polymer in the protein exterior feasible. Varying the polymer length and monomeric composition also significantly affects the ligand binding affinity. Here, we have captured three distinct dependences of the ligand binding free energy on the degree of polymerization: for NIPAm based hydrophilic polymers, TBAm dominated hydrophobic polymers and AAc dominated charged polymers. These results can be rationalized by the complex structure and the composition of protein residues at the binding interface. The entire analysis demonstrates unique binding features for polymer ligands and the possibility to modulate their binding sites and affinity by engineering the polymer structure.

Graphical abstract: Control of polymer–protein interactions by tuning the composition and length of polymer chains

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2023
Accepted
21 Dec 2023
First published
27 Dec 2023

Phys. Chem. Chem. Phys., 2024,26, 4052-4061

Control of polymer–protein interactions by tuning the composition and length of polymer chains

M. Xie, X. Jia and X. Xu, Phys. Chem. Chem. Phys., 2024, 26, 4052 DOI: 10.1039/D3CP05017C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements