Spectral and temporal atomic coherence interaction in Eu3+ : NaYF4 and Eu3+ : BiPO4
Abstract
We investigate the spectral and temporal atomic coherence interaction based on out-of-phase fluorescence (FL) and spontaneous parametric four-wave mixing (SFWM) from the hexagonal phase of Eu3+ : NaYF4 and different phases of Eu3+ : BiPO4. Spectral and temporal interactions are interrelated and reduced by about 2 times due to two-photon nested dressing in contrast to the sum of each laser excitation. As the lifetime of photons increases, off-resonance profile cross-interaction decreases because cross-interaction reverses the signal at the near time gate position and keeps it consistent at the far time gate position. Moreover, the thermal phonon dressing at 300 K exhibits 6 times more eminent and obvious temporal interaction than that at 77 K. In a different phase of Eu3+ : BiPO4, there are three dark dips having stronger self-interaction; however, Eu3+ : NaYF4 has two dark dips as Eu3+ : BiPO4 has two phonon dressing. Further, the pure hexagonal phase of Eu3+ : BiPO4 demonstrates the strongest cross-interaction and longest coherent time under the dressing effect due to the smallest dressing phonon detuning and off-resonance profile cross-interaction at PMT2 because the angle quantization is the strongest. Such results can be used for designing novel quantum devices and have potential applications in quantum memory devices.

Please wait while we load your content...