Tumor oxygenation nanoliposomes promote deep photodynamic therapy for triple-negative breast cancer†
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and has many characteristics including high metastatic rates, poor overall survival, and low response to traditional chemotherapy. Photodynamic therapy (PDT), emerging as a precise treatment modality, has shown promise in improving the antitumor response. However, it still faces challenges such as limited light penetration depth, rapid oxygen consumption, and inadequate targeting ability. In this study, we developed Rose Bengal (RB, photosensitizer) and oxygen co-loaded CREKA-modified UCNP-based nanoliposomes (CLIP-RB-PFOB@UCNP) for tumor targeting and near-infrared (NIR)-triggered deep and long-lasting PDT. Our results demonstrated that CLIP-RB-PFOB@UCNP effectively targeted and accumulated in tumor tissue through the interaction between CREKA and fibronectin, which is overexpressed in tumor cells. Under NIR irradiation, CLIP-RB-PFOB@UCNP exhibited significant destruction of orthotopic tumors, reduced the level of HIF-1α, and efficiently suppressed lung metastasis in a metastatic TNBC model. In conclusion, this study offers new avenues for improving the therapeutic outcomes of PDT for clinical TNBC treatment.