Issue 20, 2024

A one-pot CRISPR-RCA strategy for ultrasensitive and specific detection of circRNA

Abstract

Accurate and precise detection of circular RNA (circRNA) is imperative for its clinical use. However, the inherent challenges in circRNA detection, arising from its low abundance and potential interference from linear isomers, necessitate innovative solutions. In this study, we introduce, for the first time, the application of the CRISPR/Cas12a system to establish a one-pot, rapid (30 minutes to 2 hours), specific and ultrasensitive circRNA detection strategy, termed RETA-CRISPR (reverse transcription-rolling circle amplification (RT-RCA) with the CRISPR/Cas12a). This method comprises two steps: (1) the RT-RCA process of circRNA amplification, generating repeat units containing the back-splicing junction (BSJ) sequences; and (2) leveraging the protospacer adjacent motif (PAM)-independent Cas12a/crRNA complex to precisely recognize target sequences with BSJ, thereby initiating the collateral cleavage activity of Cas12a to generate a robust fluorescence signal. Remarkably, this approach exhibits the capability to detect circRNAs at a concentration as low as 300 aM. The sensor has been successfully employed for accurate detection of a potential hepatocellular carcinoma biomarker hsa_circ_0001445 (circRNA1445) in various cell lines. In conclusion, RETA-CRISPR seamlessly integrates the advantages of exponential amplification reaction and the robust collateral cleavage activity of Cas12a, positioning it as a compelling tool for practical CRISPR-based diagnostics.

Graphical abstract: A one-pot CRISPR-RCA strategy for ultrasensitive and specific detection of circRNA

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2024
Accepted
07 May 2024
First published
10 May 2024

Anal. Methods, 2024,16, 3256-3262

A one-pot CRISPR-RCA strategy for ultrasensitive and specific detection of circRNA

X. Ke, A. Liang, C. Chen and T. Hu, Anal. Methods, 2024, 16, 3256 DOI: 10.1039/D4AY00693C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements