Issue 15, 2024

A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection

Abstract

The precise quantitative analysis using surface-enhanced Raman spectroscopy (SERS) in an uncontrollable environment still faces a significant obstacle due to the poor reproducibility of Raman signals. Herein, we propose a facile method to fabricate a self-calibrating substrate based on a flexible polyvinyl alcohol (PVA) film comprising assemblies of Prussian blue (PB) and Au NPs (PB@Au) for reliable detection. PB cores were coated with an Au shell through simple electrostatic interaction, forming core–shell nanostructure PB@Au assemblies within the PVA film. The outer Au layer provided identical trends in enhancement for both the PB core and neighboring targets while PB cores served as an internal standard (IS) to correct signal fluctuations. The prevention of competitive adsorption on the metal surface between targets and ISs was achieved. The proposed PVA/PB@Au film exhibited enhanced stability of Raman signals after IS correction, resulting in improved spot-to-spot and batch-to-batch reproducibility with significantly reduced standard deviation (RSD) values from 11.42% and 25.02% to 4.43% and 9.39%, respectively. Simultaneously, a higher accuracy in the quantitative analysis of 4-mercaptobenzoic acid (4-MBA) and malachite green (MG) was achieved with fitting coefficient (R2) values improving from 0.9675 and 0.9418 to 0.9974 and 0.9832, respectively. Moreover, the PVA/PB@Au film was successfully applied to detect residual MG in real fish samples. This work opens up an avenue to improve the reproducibility of Raman signals for flexible SERS substrates in the detection of residues under various complex conditions.

Graphical abstract: A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2024
Accepted
23 Jun 2024
First published
27 Jun 2024

Analyst, 2024,149, 4060-4071

A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection

J. Zhou, H. Wang, Y. Chen, D. Lin, L. Zhang, Z. Xing, Q. Zhang and J. Xia, Analyst, 2024, 149, 4060 DOI: 10.1039/D4AN00151F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements