Issue 11, 2024

Average collision velocity of single yeast cells during electrochemically induced impacts

Abstract

We recorded current–time (it) profiles for oxidizing ferrocyanide (FCN) while spherical yeast cells of radius (rc ≈ 2 μm) collided with disk ultramicroelectrodes (UMEs) of increasing radius (re ≈ 12–45 μm). Collision signals appear as minority steps and majority blips of decreased current overlayed on the it baseline when cells block ferrocyanide flux (JFCN). We assigned steps to adsorption events and blips to bouncing collisions or contactless passages. Yeast cells exhibit impact signals of long duration (Δt ≈ 15–40 s) likely due to sedimentation. We assume cells travel a threshold distance (T) to generate collision signals of duration Δt. Thus, T represents a distance from the UME surface, at which cell perturbations on JFCN blend in with the UME noise level. To determine T, we simulated the UME current, while placing the cell at increasing distal points from the UME surface until matching the bare UME current. T-Values at 90°, 45°, and 0° from the UME edge and normal to the center were determined to map out T-regions in different experimental conditions. We estimated average collision velocities using the formula Tt, and mimicked cells entering and leaving T-regions at the same angle. Despite such oversimplification, our analysis yields average velocities compatible with rigorous transport models and matches experimental current steps and blips. We propose that single-cells encode collision dynamics into it signals only when cells move inside the sensitive T-region, because outside, perturbations of JFCN fall within the noise level set by JFCN and rc/re (experimentally established). If true, this notion will enable selecting conditions to maximize sensitivity in stochastic blocking electrochemistry. We also exploited the long Δt recorded here for yeast cells, which was undetectable for the fast microbeads used in early pioneering work. Because Δt depends on transport, it provides another analytical parameter besides current for characterizing slow-moving cells like yeast.

Graphical abstract: Average collision velocity of single yeast cells during electrochemically induced impacts

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2024
Accepted
15 Apr 2024
First published
22 Apr 2024
This article is Open Access
Creative Commons BY-NC license

Analyst, 2024,149, 3214-3223

Average collision velocity of single yeast cells during electrochemically induced impacts

J. A. Lutkenhaus, J. U. Ahmed, M. Hasan, D. C. Prosser and J. C. Alvarez, Analyst, 2024, 149, 3214 DOI: 10.1039/D4AN00134F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements