Issue 6, 2024

The toxicity response of the electrochemical signal of the cell to the drug metabolized by the S9 system

Abstract

The electrochemical detection method of cytotoxicity using intracellular purines as biomarkers has shown great potential for in vitro drug toxicity evaluation. However, no electrochemical detection system based on an in vitro drug metabolism mechanism has been devised. In this paper, electrochemical voltammetry was used to investigate the effect of the S9 system on the electrochemical behavior of HepG2 cells, and benzo[a]pyrene, fluoranthene, and pyrene were employed to investigate the sensitivity of electrochemical signals of cells to the cytotoxicity of drugs metabolized by the S9 system. The results showed that, within 8 h of exposure to the S9 system, the electrochemical signal of HepG2 cells at 0.7 V did not alter noticeably. The levels of xanthine, guanine, hypoxanthine, and adenine in the cells were not significantly altered. Compared with the absence of S9 system metabolism, benzo[a]pyrene and fluoranthene processed by the S9 system decreased the electrochemical signal of the cells in a dose-dependent manner, while pyrene did not change it appreciably. HPLC also revealed that benzo[a]pyrene and fluoranthene metabolized by the S9 system decreased the intracellular purine levels, whereas pyrene had no effect on them before and after S9 system metabolism. The cytotoxicity results of the three drugs examined by electrochemical voltammetry and MTT assay showed a strong correlation and good agreement. The S9 system had no effect on the intracellular purine levels or the electrochemical signal of cells. When the drug was metabolized by the S9 system, variations in cytotoxicity could be precisely detected by electrochemical voltammetry.

Graphical abstract: The toxicity response of the electrochemical signal of the cell to the drug metabolized by the S9 system

Article information

Article type
Paper
Submitted
02 Jan 2024
Accepted
06 Feb 2024
First published
15 Feb 2024

Analyst, 2024,149, 1921-1928

The toxicity response of the electrochemical signal of the cell to the drug metabolized by the S9 system

J. Zhang, C. Fei, S. Qi, J. Fu, S. Zhou, Z. Wang, J. Li, Y. Zhao and D. Wu, Analyst, 2024, 149, 1921 DOI: 10.1039/D4AN00010B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements