TADDOL-based P,S-bidentate phosphoramidite ligands in palladium-catalyzed asymmetric allylic substitution†
Abstract
A series of easy-to-prepare and modular chiral P,S-bidentate phosphoramidites were synthesized. With respect to Pd(II), these ligands showed the ability to form stable P,S-chelate allylic complexes. The structures of the ligands and their complexes were confirmed by 2D NMR spectroscopy and single-crystal X-ray diffraction. These chiral inducers provided up to 99% ee in the Pd-catalyzed asymmetric allylic substitution of (E)-1,3-diphenylallyl acetate with C- and N-nucleophiles and up to 94% ee in the Pd-mediated allylic alkylation of cinnamyl esters with β-ketoesters and 2,5-dimethylpyrrole. Furthermore, up to 92% ee with quantitative conversion and chemo- and regioselectivity was achieved in the rare reaction between 2-(diethoxyphosphoryl)-1-phenylallyl acetate and aniline. The effects of the structural parameters, reaction conditions and ligand-to-metal ratio on the catalytic results are discussed. It was shown that the ligands surpass their analogues with different denticity.