Issue 42, 2023

Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future

Abstract

Amid the global call for decarbonization efforts, uranium and lithium are two important metal resources critical for securing a sustainable energy future. Extraction of uranium and lithium from seawater has gained broad interest in recent years due to the thousand-fold higher quantity available as compared to land-based reserves, but the challenge lies in the ability to extract them at ultralow concentrations. Over the past two decades, the rise of nanotechnology has brought together an abundance of adsorptive materials that are poised to incentivize technologies capable of achieving high extraction performances. The objective of this review is to consolidate recent advances in uranium and lithium extraction from the standpoint of adsorptive materials and technologies for application in seawater. First, adsorptive materials for uranium extraction are reviewed, before we discuss the technology platforms into which they can be deployed (e.g., membrane-based adsorption). Second, a comprehensive review of lithium extraction technologies is presented by examining the materials and platforms capable of achieving high extraction performances. Since the scope of this review is geared towards application in seawater and desalination brines (in particular, seawater reverse osmosis (SWRO) brine), we highlight the main challenges to date – selectivity required against competing ions and long-term stability against marine biofouling. Then, we put together an outlook, featuring our perspectives on next-generation materials and techno-economic analysis. Since the properties of desalination brines are unique from those of seawater, we also distinguish the traits of next-generation materials to be used for SWRO brines to provide insights for advancing new tailored materials and technologies for application in the latter. Overall, this review sums up state-of-the-art technologies for uranium and lithium extraction, putting into perspective various technology platforms to realize high extraction performances that can address our future demands for uranium and lithium at the water-energy nexus.

Graphical abstract: Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future

Article information

Article type
Review Article
Submitted
25 Aug 2023
Accepted
20 Sep 2023
First published
02 Oct 2023

J. Mater. Chem. A, 2023,11, 22551-22589

Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future

Y. J. Lim, K. Goh, A. Goto, Y. Zhao and R. Wang, J. Mater. Chem. A, 2023, 11, 22551 DOI: 10.1039/D3TA05099H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements