Issue 13, 2023

Effect of terminations on the hydrogen evolution reaction mechanism on Ti3C2 MXene

Abstract

Two-dimensional (2D) MXene materials are proposed as high-efficiency hydrogen evolution reaction (HER) electrocatalysts. Most computational studies addressed the HER assuming a fully O-termination, even if as-synthesized MXenes feature a mixture of –O, –OH, –F, or even –H surface groups. To better understand the electrocatalytic surface composition and mechanism under HER equilibrium conditions in the Ti3C2 MXene model material, we composed Pourbaix diagrams considering ca. 450 topologically different surface terminations, including pristine Ti3C2, full –O, –OH, –F, and –H terminations, and binary and ternary situations with different group ratios. Realistic models built from Pourbaix diagrams near HER equilibrium conditions of low pH and U were used to investigate the Volmer–Heyrovsky and Volmer–Tafel mechanisms, with the particularity of considering, or not, the participation of H atoms from –OH or –H termination groups at different reaction stages. Results pointed out that the models close to the HER equilibrium line, O2/3OH1/3, F1/3O1/3OH1/3, and F3/9O4/9OH2/9, require an almost negligible overpotential of 0.01 V, while surface charges explain the impact of higher ratios of –O groups on modulating the H bond, and the positive influence of having surface –F groups.

Graphical abstract: Effect of terminations on the hydrogen evolution reaction mechanism on Ti3C2 MXene

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2023
Accepted
26 Feb 2023
First published
27 Feb 2023
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2023,11, 6886-6900

Effect of terminations on the hydrogen evolution reaction mechanism on Ti3C2 MXene

L. Meng, L. Yan, F. Viñes and F. Illas, J. Mater. Chem. A, 2023, 11, 6886 DOI: 10.1039/D3TA00261F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements