Issue 16, 2023

Defect engineering in MIL-125-(Ti)-NH2 for enhanced photocatalytic H2 generation

Abstract

Pre-designing starting materials is a sensible approach to tailor the synthetic, optoelectronic, and physicochemical properties of a photocatalyst towards higher activity without the need for additional active species. MIL-125-(Ti)-NH2, a metal–organic framework (MOF) photocatalytically active for H2 evolution, was first successfully synthesised at a relatively low temperature of 70 °C upon employing pre-designed titanium-oxo-carboxylate clusters. While rearrangement of the original cluster enabled successful MIL-125-(Ti)-NH2 formation, its ligand stoichiometry favoured MOFs with abundant “defects” at the Ti centres which in turn acted as accessible active sites for H2 generation. The catalytic sites and their local geometry were studied by pyridine-adsorbed Fourier transform infrared spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure. Interestingly, the frameworks prepared using pre-designed titanium-oxo clusters can alter electronic optical properties and energy levels. In the presence of triethanolamine as an electron donor and under visible light irradiation, this led to a ∼3.5 times higher H2 evolution rate in the titanium-oxo cluster MOF compared to MIL-125-(Ti)-NH2 obtained by typical hydrothermal synthesis. The obtained catalyst also exhibits a good-reusable performance for at least three consecutive runs without any loss in its reactivity. Pre-designed clusters can be simply utilised to generate accessible active sites and manipulate electrical properties for enhancing catalytic performance.

Graphical abstract: Defect engineering in MIL-125-(Ti)-NH2 for enhanced photocatalytic H2 generation

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2022
Accepted
29 Mar 2023
First published
29 Mar 2023

J. Mater. Chem. A, 2023,11, 9143-9151

Defect engineering in MIL-125-(Ti)-NH2 for enhanced photocatalytic H2 generation

L. Pukdeejorhor, S. Wannapaiboon, J. Berger, K. Rodewald, S. Thongratkaew, S. Impeng, J. Warnan, S. Bureekaew and R. A. Fischer, J. Mater. Chem. A, 2023, 11, 9143 DOI: 10.1039/D2TA09963B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements