Issue 3, 2023

Influence of central sidechain on self-assembly of glycine-x-glycine peptides

Abstract

Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence possibilities and, therefore, engineered properties. This work examines the propensity of the GxG peptide family, where x denotes a guest residue, to self-assemble into fibril networks via changes in pH and ethanol concentration. These triggers for gelation are motivated by recent work on GHG and GAG, which unexpectedly self-assemble into centimeter long fibril networks with unique rheological properties. The propensity of GxG peptides to self-assemble, and the physical and chemical properties of the self-assembled structures are characterized by microscopy, spectroscopy, rheology, and X-ray diffraction. Interestingly, we show that the number, length, size, and morphology of the crystalline self-assembled aggregates depend significantly on the x-residue chemistry and the solution conditions, i.e. pH, temperature, peptide concentration, etc. The different x-residues allow us to probe the importance of different peptide interactions, e.g. π–π stacking, hydrogen bonding, and hydrophobicity, on the formation of fibrils. We conclude that fibril formation requires π–π stacking interactions in pure water, while hydrogen bonding can form fibrils in the presence of ethanol–water solutions. These results validate and support theoretical arguments on the propensity for self-assembly and leads to a better understanding of the relationship between peptide chemistry and fibril self-assembly. Overall, GxG peptides constitute a unique family of peptides, whose characterization will aid in advancing our understanding of self-assembly driving forces for fibril formation in peptide systems.

Graphical abstract: Influence of central sidechain on self-assembly of glycine-x-glycine peptides

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2022
Accepted
17 Nov 2022
First published
18 Nov 2022

Soft Matter, 2023,19, 394-409

Author version available

Influence of central sidechain on self-assembly of glycine-x-glycine peptides

L. J. Thursch, T. A. Lima, N. O’Neill, F. F. Ferreira, R. Schweitzer-Stenner and N. J. Alvarez, Soft Matter, 2023, 19, 394 DOI: 10.1039/D2SM01082H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements