Multi-dynamics and emission tailored fluoroperovskite-based down-conversion phosphors for enhancing the current density and stability of the perovskite solar cells†
Abstract
State-of-the-art and innovative research is being intensively employed on perovskite solar cells (PSCs) to expand their frontiers further. This study is a successful attempt to drive the limit of photocurrent density (Jsc) beyond conventional PSCs (which typically utilize the visible spectrum alone) through a nonlinear optical phenomenon called down-conversion (DC). The use of DC luminescence to harness the UV region from the solar spectrum is explored by utilizing Eu3+ activated RbCaF3, a fluoroperovskite-based phosphor material. It is observed that PSCs, which used RbCaF3:Eu3+ incorporated TiO2 electron transport layer (ETL), enhanced their Jsc and UV stability compared to those with pristine TiO2-oriented ETL. Such improvement in the aforementioned devices is due to the result of converting high-energy UV photons to effectively absorbable low-energy visible photons for perovskite absorbers. Overall, the DC-aided PSC offered a substantial Jsc of 23.54 mA cm−2 (9.2% superior to the conventional PSC) and boosted its power conversion efficiency (PCE) from 11.2% to 13.3%. It is evident that DC-based PSCs show a much better shelf-life when compared to conventional PSCs. This unique approach for boosting the Jsc with enhanced stability can be utilized for the potential applications of PSCs.