Issue 36, 2023

A functional unit combination strategy for enhancing red room-temperature phosphorescence

Abstract

Red room-temperature phosphorescence (RTP) materials based on non-metallic organic compounds are less reported compared to the commonly found green RTP materials. Here, we propose a novel approach to obtain red RTP materials by integrating and combining two functional units, resembling a jigsaw puzzle. In this approach, benzo[c][2,1,3]thiadiazole (BZT) serves as the red RTP unit, while a folding unit containing sulphur/oxygen is responsible for enhancing spin–orbit coupling (SOC) to accelerate the intersystem crossing (ISC) process. Three new molecules (SS-BZT, SO-BZT, and OO-BZT) were designed and synthesized, among which SS-BZT and SO-BZT with folded geometries demonstrate enhanced red RTP in their monodisperse films compared to the parent BZT. Meanwhile, the SS-BZT film shows a dual emission consisting of blue fluorescence and red RTP, with a significant spectral separation of approximately 150 nm, which makes the SS-BZT film highly suitable for applications in optical oxygen sensing and ratiometric detection. Within the oxygen concentration range of 0–1.31%, the SS-BZT film demonstrates a quenching constant of 2.66 kPa−1 and a quenching efficiency of 94.24%, indicating that this probe has the potential to accurately detect oxygen in a hypoxic environment.

Graphical abstract: A functional unit combination strategy for enhancing red room-temperature phosphorescence

Supplementary files

Article information

Article type
Edge Article
Submitted
17 Jul 2023
Accepted
21 Aug 2023
First published
22 Aug 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 9733-9743

A functional unit combination strategy for enhancing red room-temperature phosphorescence

S. Zhao, Z. Yang, X. Zhang, H. Liu, Y. Lv, S. Wang, Z. Yang, S. Zhang and B. Yang, Chem. Sci., 2023, 14, 9733 DOI: 10.1039/D3SC03668E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements