Issue 28, 2023

Revealing the role of nitroxyl during hepatic ischemia-reperfusion injury with a NIR-II luminescent nanoprobe

Abstract

Hepatic ischemia-reperfusion injury (HIRI) can severely impair liver function and has a potential relationship with reactive nitrogen species. Nitroxyl (HNO) has been discovered to be involved in some biological functions and pharmacological activities. However, till now, there has been no knowledge of the role of HNO in the HIRI process, mainly because accurately tracking its fluctuation at the molecular level in vivo is extremely difficult. Herein, we developed a responsive ratiometric near-infrared-II (NIR-II) nanoprobe with rare earth ions-doped nanoparticles (RENPs) as the luminophore and a molecular trigger that can specifically react with HNO to regulate the NIR-II emission of RENPs. With this nanoprobe, we revealed the relationship between HNO and the HIRI process and demonstrated that HNO may be a product of stress reactions during HIRI. This work not only creates a useful tool for visually tracking HNO in vivo but also provides first-hand information about its role in HIRI.

Graphical abstract: Revealing the role of nitroxyl during hepatic ischemia-reperfusion injury with a NIR-II luminescent nanoprobe

Supplementary files

Article information

Article type
Edge Article
Submitted
09 May 2023
Accepted
19 Jun 2023
First published
20 Jun 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 7743-7752

Revealing the role of nitroxyl during hepatic ischemia-reperfusion injury with a NIR-II luminescent nanoprobe

C. Li, W. Bi, T. Liang, Z. Li and Z. Liu, Chem. Sci., 2023, 14, 7743 DOI: 10.1039/D3SC02338A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements