Issue 5, 2023

A decacationic ferrocene-based metallostar

Abstract

Decacationic metallostars have been prepared by the reaction of permercurated ferrocene FeC10(HgO2CCF3)10 with superacidic (C5F5NH)(SbF6) (pKa = −11 estimated in H2O) in multigram scale. In the resulting compound, [FeC10Hg10(NC5F5)n][SbF6]10, the labile pentafluoropyridine ligands are readily displaced by acetonitrile (MeCN) or tetrahydrothiophene (THT). In the X-ray structure of [FeC10Hg10(THT)10][SbF6]10·24 MeCN no cation–anion contacts between mercury and fluorine were observed. Moreover, cyclic voltammetry measurements of [FeC10(Hg(MeCN))10]10+ and [FeC10(Hg(THT))10]10+ revealed a (quasi)reversible one-electron oxidation of Fe(II) to Fe(III). From the reaction of [FeC10(Hg(MeCN))10]10+ with MoF6 as oxidant the ferrocenium cation [FeC10(Hg(MeCN))10]11+ was obtained and characterized via single crystal XRD. These electrophilic metallostars are promising potential building blocks for the synthesis of dendritic architectures containing a robust, tenfold functionalized ferrocene core.

Graphical abstract: A decacationic ferrocene-based metallostar

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Nov 2022
Accepted
27 Dec 2022
First published
28 Dec 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 1132-1137

A decacationic ferrocene-based metallostar

S. M. Rupf, A. L. Moshtaha and M. Malischewski, Chem. Sci., 2023, 14, 1132 DOI: 10.1039/D2SC06151A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements