Issue 48, 2023, Issue in Progress

The iron group transition-metal (Fe, Ru, Os) coordination of Se-doped graphitic carbon (Se@g-C3N4) nanostructures for the smart therapeutic delivery of zidovudine (ZVD) as an antiretroviral drug: a theoretical calculation perspective

Abstract

This study employed density functional theory (DFT) computational techniques at the ωB97XD/def2svp level of theory to comprehensively explore the electronic behavior of Fe-group transition metal (Fe, Ru, Os) coordination of Se-doped graphitic carbon (Se@g-C3N4) nanosystems in the smart delivery of zidovudine (ZVD), an antiretroviral drug. The HOMO–LUMO results of the interactions show a general reduction in energy gap values across all complexes in the following order: ZVD_Se@C3N4 < ZVD_Ru_Se@C3N4 < ZVD_Fe_Se@C3N4 < ZVD_Os_Se@C3N4. ZVD_Se@C3N4 exhibits the smallest post-interaction band gap of 3.783 eV, while ZVD_Os_Se@C3N4 presents the highest energy band gap of 5.438 eV. Results from the corrected adsorption energy (BSSE) revealed that Os_Se@C3N4 and Ru_Se@C3N4 demonstrated more negative adsorption energies of −2.67 and −2.701 eV, respectively, pointing to a more favorable interaction between ZVD and these systems, thus potentially enhancing the drug delivery efficiency. The investigation into the drug release mechanism from the adsorbents involved a comprehensive examination of the dipole moment and the influence of pH, shedding light on the controlled release of ZVD. Additionally, investigating the energy decomposition analysis (EDA) revealed that ZVD_Ru_Se@C3N4 and ZVD_Fe_Se@C3N4 exhibited the same total energy of −787.7 kJ mol−1. This intriguing similarity in their total energy levels suggested that their stability was governed by factors beyond reactivity, possibly due to intricate orbital interactions. Furthermore, analyzing the bond dissociation energies showed that all systems exhibited negative enthalpy values, indicating that these systems were exothermic at both surface and interaction levels, thus suggesting that these processes emitted heat, contributing to the surrounding thermal energy.

Graphical abstract: The iron group transition-metal (Fe, Ru, Os) coordination of Se-doped graphitic carbon (Se@g-C3N4) nanostructures for the smart therapeutic delivery of zidovudine (ZVD) as an antiretroviral drug: a theoretical calculation perspective

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2023
Accepted
03 Nov 2023
First published
21 Nov 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 34078-34096

The iron group transition-metal (Fe, Ru, Os) coordination of Se-doped graphitic carbon (Se@g-C3N4) nanostructures for the smart therapeutic delivery of zidovudine (ZVD) as an antiretroviral drug: a theoretical calculation perspective

F. A. Nelson, H. Louis, I. Benjamin and R. A. Timothy, RSC Adv., 2023, 13, 34078 DOI: 10.1039/D3RA06885D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements