A theoretical study of the gas-phase reactions of propadiene with NO3: mechanism, kinetics and insights†
Abstract
In this study, the conversion mechanisms and kinetics of propadiene (CH2
C
CH2) induced by NO3 were researched using density functional theory (DFT) and transition state theory (TST) measurements. The NO3-addition pathways to generate IM1 (CH2ONO2CCH2) and IM2 (CH2CONO2CH2) play a significant role. P3 (CH2CONOCHO + H) was the dominant addition/elimination product. Moreover, the results manifested that one H atom from the –CH2– group has to be abstracted by NO3 radicals, leading to the final product h-P1 (CH2CCH + HNO3). Due to the high barrier, the H-abstraction pathway is not important for the propadiene + NO3 reaction. In addition, the computed ktot value of propadiene reacting with NO3 at 298 K is 3.34 × 10−15 cm3 per molecule per s, which is in accordance with the experimental value. The computed lifetime of propadiene oxidized by NO3 radicals was assessed to be 130.16–6.08 days at 200–298 K and an altitude of 0–12 km. This study provides insights into the transformation of propadiene in a complex environment.

Please wait while we load your content...