Issue 28, 2023, Issue in Progress

Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy

Abstract

In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu3+ ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd3+ ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 μg mL−1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min. The dual-targeted function and synergistic treatment of CPT, PTT, and PDT were also responsible for the 20% survival rate of the A549 cancer cells treated with 200 μg mL−1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 30 min. The results showed that rMSN-EuGd-Bi@CPT-HA-FA can effectively combine chemotherapy (through CPT), PDT, and PTT for cancer treatment.

Graphical abstract: Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2023
Accepted
29 May 2023
First published
23 Jun 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 19079-19090

Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy

Y. Huang, Z. Lee, K. Chang, Z. Wu, C. Lee, M. Tsou and H. Lin, RSC Adv., 2023, 13, 19079 DOI: 10.1039/D3RA02068A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements