Issue 17, 2023

Sophorolipid-toluidine blue conjugates for improved antibacterial photodynamic therapy through high accumulation

Abstract

Anti-bacterial photodynamic therapy is the most promising treatment protocol for bacterial infection, but low accumulation of photosensitizers has seriously hindered their development in clinical application. Here, with inherent outstanding affinity to bacterial cell envelope, sophorolipid produced from Candida bombicola has been conjugated to toluidine blue (SL-TB) through amidation reaction. The structure of SL-TB conjugates was identified by 1H-NMR, FT-IR and ESI-HRMS. The interfacial assembly and photophysical properties of SL-TB conjugates have been disclosed through surface tension, micro-polarity, electronic and fluorescence spectra. After light irradiation, the log10 (reduced CFU) of free toluidine blue to P. aeruginosa and S. aureus were 4.5 and 7.9, respectively. In contrast, SL-TB conjugates showed a higher bactericidal activity, with a reduction of 6.3 and 9.7 log10 units of CFU against P. aeruginosa and S. aureus, respectively. The fluorescence quantitative results showed that SL-TB could accumulate 2850 nmol/1011 cells and 4360 nmol/1011 cells by P. aeruginosa and S. aureus, which was much higher than the accumulation of 462 nmol/1011 cells and 827 nmol/1011 cells of free toluidine blue. Through the cooperation of triple factors, including sophorose affinity to bacterial cells, hydrophobic association with plasma membrane, and electrostatic attraction, higher SL-TB accumulation was acquired, which has enhanced antibacterial photodynamic efficiencies.

Graphical abstract: Sophorolipid-toluidine blue conjugates for improved antibacterial photodynamic therapy through high accumulation

Article information

Article type
Paper
Submitted
12 Mar 2023
Accepted
10 Apr 2023
First published
17 Apr 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 11782-11793

Sophorolipid-toluidine blue conjugates for improved antibacterial photodynamic therapy through high accumulation

X. Gu, L. Xu, H. Yuan, C. Li, J. Zhao, S. Li and D. Yu, RSC Adv., 2023, 13, 11782 DOI: 10.1039/D3RA01618H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements