Stabile fluoro-benzene-based spacer for lead-free Dion–Jacobson perovskites†
Abstract
Two-dimensional perovskite materials have been investigated as potential candidates for next-generation-wide band gap devices and lead-based perovskites are the most common materials within two-and three-dimensional structures due to their superior optoelectronic properties. Nevertheless, the stability and toxic element issues are the two significant shortcomings of device commercialization. The fluoro-benzene-based divalent ammonium spacer cations and replacing Zn2+ with Pb2+ will improve the two-dimensional perovskite stability. These stable lead-free wide band gap two-dimensional structures have better carrier mobility at high-temperature regions. Therefore, lead-free two-dimensional perovskites might be suitable for higher temperatures optoelectronic applications.